(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
naiverev, app

They will be analysed ascendingly in the following order:
app < naiverev

(6) Obligation:

Innermost TRS:
Rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))

The following defined symbols remain to be analysed:
app, naiverev

They will be analysed ascendingly in the following order:
app < naiverev

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)

Induction Base:
app(gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(b)) →RΩ(1)
gen_Cons:Nil4_0(b)

Induction Step:
app(gen_Cons:Nil4_0(+(n6_0, 1)), gen_Cons:Nil4_0(b)) →RΩ(1)
Cons(hole_a2_0, app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b))) →IH
Cons(hole_a2_0, gen_Cons:Nil4_0(+(b, c7_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil

Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)

Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))

The following defined symbols remain to be analysed:
naiverev

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)

Induction Base:
naiverev(gen_Cons:Nil4_0(0)) →RΩ(1)
Nil

Induction Step:
naiverev(gen_Cons:Nil4_0(+(n509_0, 1))) →RΩ(1)
app(naiverev(gen_Cons:Nil4_0(n509_0)), Cons(hole_a2_0, Nil)) →IH
app(gen_Cons:Nil4_0(c510_0), Cons(hole_a2_0, Nil)) →LΩ(1 + n5090)
gen_Cons:Nil4_0(+(n509_0, +(0, 1)))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil

Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)

Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)

(14) BOUNDS(n^2, INF)

(15) Obligation:

Innermost TRS:
Rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil

Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)

Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
naiverev(gen_Cons:Nil4_0(n509_0)) → gen_Cons:Nil4_0(n509_0), rt ∈ Ω(1 + n5090 + n50902)

(17) BOUNDS(n^2, INF)

(18) Obligation:

Innermost TRS:
Rules:
naiverev(Cons(x, xs)) → app(naiverev(xs), Cons(x, Nil))
app(Cons(x, xs), ys) → Cons(x, app(xs, ys))
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
naiverev(Nil) → Nil
app(Nil, ys) → ys
goal(xs) → naiverev(xs)

Types:
naiverev :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
app :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
notEmpty :: Cons:Nil → True:False
True :: True:False
False :: True:False
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
hole_True:False3_0 :: True:False
gen_Cons:Nil4_0 :: Nat → Cons:Nil

Lemmas:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)

Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil4_0(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
app(gen_Cons:Nil4_0(n6_0), gen_Cons:Nil4_0(b)) → gen_Cons:Nil4_0(+(n6_0, b)), rt ∈ Ω(1 + n60)

(20) BOUNDS(n^1, INF)